Reverse Engineering of Asynchronous Boolean Networks via Minimum Explanatory Set and Maximum Likelihood

نویسندگان

  • Cheng Zheng
  • Zhi Geng
  • Bernhard Schölkopf
چکیده

In this paper, we propose an approach for reconstructing asynchronous Boolean networks from observed data. We find the causal relationships in Boolean networks using an asynchronous evolution approach. In our approach, we first find a minimum explanatory set for a node to reduce complexity of candidate Boolean functions, and then we choose a Boolean function for the node based on the maximum likelihood. This approach is stimulated by the task SIGNET of the causal challenge #2 pot-luck (Jenkins, 2009). Besides the data set SIGNET, we also applied our approach to two other datasets to evaluate our approach: one is generated by Professor Isabelle Guyon and the other generated ourselves from the signal transduction network of Abscisic acid in guard cell.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation Models and Fitting Them for the Boolean Random Sets

In order to study the relationship between random Boolean sets and some explanatory variables, this paper introduces a Propagation model. This model can be applied when corresponding Poisson process of the Boolean model is related to explanatory variables and the random grains are not affected by these variables. An approximation for the likelihood is used to find pseudo-maximum likelihood esti...

متن کامل

Estimating the Time of a Step Change in Gamma Regression Profiles Using MLE Approach

Sometimes the quality of a process or product is described by a functional relationship between a response variable and one or more explanatory variables referred to as profile. In most researches in this area the response variable is assumed to be normally distributed; however, occasionally in certain applications, the normality assumption is violated. In these cases the Generalized Linear Mod...

متن کامل

Inferring gene regulatory networks from time series data using the minimum description length principle

MOTIVATION A central question in reverse engineering of genetic networks consists in determining the dependencies and regulating relationships among genes. This paper addresses the problem of inferring genetic regulatory networks from time-series gene-expression profiles. By adopting a probabilistic modeling framework compatible with the family of models represented by dynamic Bayesian networks...

متن کامل

Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation

In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...

متن کامل

DALD:-Distributed-Asynchronous-Local-Decontamination Algorithm in Arbitrary Graphs

Network environments always can be invaded by intruder agents. In networks where nodes are performing some computations, intruder agents might contaminate some nodes. Therefore, problem of decontaminating a network infected by intruder agents is one of the major problems in these networks. In this paper, we present a distributed asynchronous local algorithm for decontaminating a network. In mos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010